Numerical reproducibility for the parallel reduction on multi- and many-core architectures

نویسندگان

  • Sylvain Collange
  • David Defour
  • Stef Graillat
  • Roman Iakymchuk
چکیده

Onmodern multi-core, many-core, and heterogeneous architectures, floating-point computations, especially reductions, may become non-deterministic and, therefore, non-reproducible mainly due to the non-associativity of floating-point operations. We introduce an approach to compute the correctly rounded sums of large floating-point vectors accurately and efficiently, achieving deterministic results by construction. Our multi-level algorithm consists of two main stages: first, a filtering stage that relies on fast vectorized floating-point expansion; second, an accumulation stage based on superaccumulators in a high-radix carry-save representation. We present implementations on recent Intel desktop and server processors, Intel Xeon Phi co-processors, and both AMD and NVIDIA GPUs. We show that numerical reproducibility and bit-perfect accuracy can be achieved at no additional cost for large sums that have dynamic ranges of up to 90 orders of magnitude by leveraging arithmetic units that are left underused by standard reduction algorithms. © 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...

متن کامل

Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures

A new solver featuring time-space adaptation and error control has been recently introduced to tackle the numerical solution of stiff reaction-diffusion systems. Based on operator splitting, finite volume adaptive multiresolution and high order time integrators with specific stability properties for each operator, this strategy yields high computational efficiency for large multidimensional com...

متن کامل

Enhancing Parallelism of Tile Bidiagonal Transformation on Multicore Architectures Using Tree Reduction

Abstract. The objective of this paper is to enhance the parallelism of the tile bidiagonal transformation using tree reduction on multicore architectures. First introduced by Ltaief et. al [LAPACK Working Note #247, 2011], the bidiagonal transformation using tile algorithms with a two-stage approach has shown very promising results on square matrices. However, for tall and skinny matrices, the ...

متن کامل

Wavelet-Based Adaptive Solvers on Multi-core Architectures for the Simulation of Complex Systems

We build wavelet-based adaptive numerical methods for the simulation of advection dominated flows that develop multiple spatial scales, with an emphasis on fluid mechanics problems. Wavelet based adaptivity is inherently sequential and in this work we demonstrate that these numerical methods can be implemented in software that is capable of harnessing the capabilities of multi-core architecture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Parallel Computing

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2015